SUSTAINABLE DESIGN STRATEGIES

Sustainable architecture looks at human civilization as an integral part of the natural world, and seeks to preserve nature through encouraging conservation in daily life. Energy conservation in buildings is a complex issue involving sensitivity to the building site, choice of appropriate construction methods, use and control of daylight, selection of finishes and colors, and the design of artificial lighting. The selection of heating, ventilating, and air-conditioning (HVAC) and other equipment can have a major effect on energy use. The use of alternative energy sources, waste control, water recycling, and control of building operations and maintenance all contribute to sustainable design.


The materials and methods used for building construction and finishing have an impact on the larger world. The design of a building determines how much energy it will use throughout its life. The materials used in the building’s interior are tied to the waste and pollution generated by their manufacture and eventual disposal. Increasing energy efficiency and using clean energy sources can limit greenhouse gases.

According to Design Ecology, a project sponsored by Chicago’s International Interior Design Association (IIDA) and Collins & Aikman Floorcoverings, “Sustainability is a state or process that can be maintained indefinitely. The principles of sustainability integrate three closely intertwined elements—the environment, the economy, and the social system—into a system that can be maintained in a healthy state indefinitely.”

Environmentally conscious interior design is a practice that attempts to create indoor spaces that are environmentally sustainable and healthy for their occupants. Sustainable interiors address their impact on the global environment. To achieve sustainable design, interior designers must collaborate with architects, developers, engineers, environmental consultants, facilities and building managers, and contractors. The professional ethics and responsibilities of the interior designer include the creation of healthy and safe indoor environments. The interior designer’s choices can provide comfort for the building’s occupants while still benefiting the environment, an effort that often requires initial conceptual creativity rather than additional expense.

Energy-efficient techniques sometimes necessitate special equipment or construction, and may consequently have a higher initial cost than conventional designs. However, it is often possible to use techniques that have multiple benefits, spreading the cost over several applications to achieve a better balance between initial costs and benefits. For example, a building designed for daylighting and natural ventilation also offers benefits for solar heating, indoor air quality (IAQ), and lighting costs. This approach cuts across the usual building system categories and ties the building closely to its site. We discuss many of these techniques in this blog, crossing conventional barriers between building systems in the process.

As an interior designer, you can help limit greenhouse gas production by specifying energy-efficient lighting and appliances. Each kilowatt-hour (kWh) of electricity produced by burning coal releases almost 1 kg (more than 2 lb) of carbon dioxide into the atmosphere. By using natural light, natural ventilation, and adequate insulation in your designs, you reduce energy use.

Specify materials that require less energy to manufacture and transport. Use products made of recycled materials that can in turn be recycled when they are replaced. It is possible to use materials and methods that are good for the global environment and for healthy interior spaces, that decrease the consumption of energy and the strain on the environment, without sacrificing the comfort, security, or aesthetics of homes, offices, or public spaces.

One way to reduce energy use while improving conditions for the building’s occupants is to introduce useroperated controls. These may be as low-tech as shutters and shades that allow the control of sunlight entering a room and operable windows that offer fresh air and variable temperatures. Users who understand how a building gets and keeps heat are more likely to conserve energy. Occupants who have personal control are comfortable over a wider range of temperatures than those with centralized controls.

Using natural on-site energy sources can reduce a building’s fossil fuel needs. A carefully sited building can enhance daylighting as well as passive cooling by night ventilation. Good siting also supports opportunities for solar heating, improved indoor air quality, less use of electric lights, and added acoustic absorption.

Rainwater retention employs local water for irrigation and flushing toilets. On-site wastewater recycling circulates the water and waste from kitchens and baths through treatment ponds, where microorganisms and aquatic plants digest waste matter. The resulting water is suitable for irrigation of crops and for fish food. The aquatic plants from the treatment ponds can be harvested for processing as biogas, which can then be used for cooking and for feeding farm animals. The manure from these animals in turn provides fertilizer for crops.

Look at the building envelope, HVAC system, lighting, equipment and appliances, and renewable energy systems as a whole. Energy loads—the amount of energy the building uses to operate—are reduced by integration with the building site, use of renewable resources, the design of the building envelope, and the selection of efficient lighting and appliances. Energy load reductions lead to smaller, less expensive, and more efficient HVAC systems, which in turn use less energy.

Buildings, as well as products, can be designed for recycling. A building designed for sustainability adapts easily to changed uses, thereby reducing the amount of demolition and new construction and prolonging the building’s life. With careful planning, this strategy can avoid added expense or undifferentiated, generic design. The use of removable and reusable demountable building parts adds to adaptability, but may require a heavier structural system, as the floors are not integral with the beams, and mechanical and electrical systems must be well integrated to avoid leaks or cracks. Products that don’t combine different materials allow easier separation and reuse or recycling of metals, plastics, and other constituents than products where diverse materials are bonded together.
Share on Google Plus

2 comments:

  1. This blog is very informative for architecture and designers.these are the main issues which must keep in mind before designing any structure.

    Architecture in delhi
    http://www.altitudedesignindia.com/

    ReplyDelete

Contact Form

Name

Email *

Message *